Strichartz estimates for Schrödinger equations with variable coefficients

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strichartz Estimates for Wave Equations with Coefficients of Sobolev Regularity

Wave packet techniques provide an effective method for proving Strichartz estimates on solutions to wave equations whose coefficients are not smooth. We use such methods to show that the existing results for C1,1 and C1,α coefficients can be improved when the coefficients of the wave operator lie in a Sobolev space of sufficiently high order.

متن کامل

Dispersive and Strichartz estimates for hyperbolic equations with constant coefficients

Dispersive and Strichartz estimates for solutions to general strictly hyperbolic partial differential equations with constant coefficients are considered. The global time decay estimates of Lp−Lq norms of propagators are obtained, and it is shown how the time decay rates depend on the geometry of the problem. The frequency space is separated in several zones each giving a certain decay rate. Ge...

متن کامل

Strichartz estimates for the Schrödinger and heat equations perturbed with singular and time dependent potentials

In this paper, we prove Strichartz estimates for the Schrödinger and heat equations perturbed with singular and time dependent potentials.

متن کامل

Weighted L-estimates for Dissipative Wave Equations with Variable Coefficients

We establish weighted L2-estimates for the wave equation with variable damping utt −∆u+ aut = 0 in R, where a(x) ≥ a0(1+ |x|)−α with a0 > 0 and α ∈ [0, 1). In particular, we show that the energy of solutions decays at a polynomial rate t−(n−α)/(2−α)−1 if a(x) ∼ a0|x|−α for large |x|. We derive these results by strengthening significantly the multiplier method. This approach can be adapted to ot...

متن کامل

Decay Estimates for Wave Equations with Variable Coefficients

We establish weighted L2−estimates for dissipative wave equations with variable coefficients that exhibit a dissipative term with a space dependent potential. These results yield decay estimates for the energy and the L2−norm of solutions. The proof is based on the multiplier method where multipliers are specially engineered from asymptotic profiles of related parabolic equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mémoires de la Société mathématique de France

سال: 2005

ISSN: 0249-633X,2275-3230

DOI: 10.24033/msmf.414